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ABSTRACT

Multi-pattern matching involves matching a data item aggia
large database of “signature” patterns. Existing algaritior multi-
pattern matching do not scale well as the size of the sigealatabase
increases. In this paper, we present sigMatch — a fast, tilefsa
and scalable technique for multi-pattern signature matghiAt

its heart, sigMatch organizes the signature database iffvoa
cessor) cache-efficient g-gram index structure, callecstg@ree.
The sigTree groups patterns based on common sub-patteicis, s
that signatures that don’'t match can be quickly eliminateanf
the matching process. The sigTree also uses parallel Bldwmrsfi
and a technique to reduce imbalances across groups, foowegr
performance. Using extensive empirical evaluation actioss di-
verse domains, we show that sigMatch often outperformgingis
methods by an order of magnitude or more.

1. INTRODUCTION

The problem of multi-pattern matching is defined as follows:
Given a set of patterns? = {p1, p2, ..., pn }, Where eaclp; is a
regular expression pattern over an alphapgtfind all occurrences
of these patterns in a data itef, over the same alphabet.

The term “pattern” in the definition above, is often also edll
“signature” in the literature, and in this paper we use thiee
terms interchangeably to refer to a regular expressions phob-
lem of multi-pattern matching has a number of practical &ppl
tions, including Information Extraction (IE), anti-viruscanners
(AVSs) and Intrusion Detection Systems (IDSs).

First consider the use of multi-pattern matching in an |Beys

used in IE systems. In approximate multi-string matchiraghe
entity is matched to a string (e.g. “University of Wiscorisin
the example above), and some string similarity measureed tcs
capture the different ways in which this string could be nefé to
in the text documents. A detailed study of whether multiqrat
matching or approximate string matching (or some combamatis
more effective for entity resolution in IE applicationsais interest-
ing research topic and beyond the scope of this paper. Nless,
there are examples of IE systems, such as DBLife, that redy-he
ily on regular expression matching —i.e., they require irpéttern
matching techniques that we consider in this paper.

Other applications of multi-pattern matching include aritus
scanners (AVSs) and Intrusion Detection Systems (IDSsgwrie-
quire matching a set of signatures of known viruses/thragisnst
some streaming data to check for presence of malware.

We note that in multi-pattern matching, the signatures are u
ally available beforehand while the data/text is streamehis is
in contrast to the problem of searching text [11] where the-do
uments/text are available beforehand for indexing and ¢gelar
expression signatures are streamed. Prior technique®staggin
literature [15, 20, 28] build an index structure on the signas and
use it to scan through a data item in linear time (in terms ef th
length of the data item). However, these techniques do radé sc
as the size of the signature database increases. To makersnatt
worse, in many applications, the signature databases avergy
rapidly. For example, the number of signatures in AVSs anidD
have nearly doubled over the last few years [2, 4]; |IE systaras
becoming more complex with larger signature databases {i6]
signature databases for applications like spam detectidncan-

An |E system often needs to match crawled web pages against atent filtering are also growing rapidly [5]. This problem Haesen

set of patterns. For example, in DBLife [13], mentions foe th
entity “University of Wisconsin” is coded as the followinggu-
lar expression:((University|Univ.]Univ)\s + of |U|U.)\s +
Wisconsin(\s + (at|in|,| — | — =))?\s + Madison. This reg-
ular expression allows matching this entity with differevays of
referring to this university, including “Univ Of Wisconsit Madi-
son” and “U. Wisconsin, Madison”.

We note that the problem considered in this paper is differen
from approximate multi-string matchind.0, 17, 18], which is also
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amplified by the rapid increase in disk space usage in the afase
AVSs, network bandwidth in the case of IDSs, and web content
in the case of IE systems, which increases the size of therlynde
ing data leading to more frequent invocations of these rpatiern
matching systems.

Consequently, there is a compelling need for a multi-pattesitch-
ing method that is ajast b) scalablewith increasing signature
database sizes, and ggnericso that it can work in any domain
that requires multi-pattern matching. In this paper we @nés
technique, called sigMatch, that addresses this need.

The sigMatch method is a generic filtering technique thattmn
plugged in as a pre-processing step for any existing maltiepn
matching system. Figure 1 provides a high-level overviewhef
sigMatch system. On the left of this figure is the data thatla¢e
be matched, which is splitinto a numberdzita items The descrip-
tion of the data item depends on the application. For exaniple
the case of an |IE system a data item can be a web page, whereas fo
an IDS a data item can be a network packet, and for an AVS each
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Figure 1: High-level overview of the system
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data item can be a memory buffer or a file. Data items accepted b
sigMatch, referred to asandidatesare then sent to a verification
unit in the actual end application to perform a final (and de¥ie)
check for the presence of patterns. Note that the sigMataifufeo
does not send any other information to the verification wegiard-
ing the patterns that may or may not be present in the data.deni
sign ensures that sigMatch can be used as a portable “filtersa
a wide variety of existing pattern matching systems. Thisege
approach is desirable, as multi-pattern matching appiicathave
varying characteristics. For example IDSs often have feartsh
signatures, while AVS databases often have a large numbengf
signatures. In addition, while IDSs use the full capalgititdf reg-
ular expressions, AVSs and IE systems often restrict these
primarily to the use of wildcard characters like * and ?. Tig s
Match technique can be used as a pre-processing filter stellvi
these applications. Furthermore, sigMatch is designee t ¢on-
servative filtering technique. So it can produce some fatsitipe
matches, but it never misses a match (i.e., has no falseivegjat
Thus, sigMatch is a “safe” filtering technique.

For speed and scalability, sigMatch uses an index, called th
sigTree, to index a conveniently chosen substring (g-grixom
each signature. Consequently, if no substring indexecsisitirree
is present in a data item, then that data item can be quiclely di
carded as it is guaranteed to not have any content that nsatiche
signature database (this situation is called the “no-niatalse).
Previous g-gram filter structures suggested in literatitfeee use
tries [20] or Bloom filters [15]. While trie-based structsrare
faster, Bloom filters (which are essentially bitmaps) sdad¢ter
with increasing number of signatures. As far as we know, g T
is the first structure that combines the benefits of both agigres.

The sigMatch technique is also designed to exploit processo
caches effectively. The size of previous index structuseglf as
those used in [15, 20, 21]) increases rapidly as the sizeeo$itl
nature database increases. These structures quickly leceoger
than the processor (L2) caches, and accessing these staictu
ten requires at least one random memory acqessbyteof the
scanned data item. Given the increasing gap between porcess
speeds and memory access latencies [26], these algoritenusa
able to leverage the full capabilities of current process&ince in
many multi-pattern matching applications the “no-matchses are
common, sigMatch uses a largely L2 cache-resident g-graexin
structure to quickly discard these no-match cases. Thudrait
matically reduces the number of main memory accesses tiresul
in improved performance. In addition, the g-gram index ctice
used in sigTree is designed to eliminate a significant foacof
such no-match cases using only L1 cache references (which ty
ically costs only one cycle to access, compared to a few téns o
cycles for access to the L2 cache, and few hundreds of cyotes f
access to the main memory).

In order to test sigMatch, we integrated it with two of theglest
(from the perspective of signature database sizes) putalie-sf-

the-art systems: namely, ClamAV — a popular open-source,AVS
and Bro — a network IDS. We also tested sigMatch on a real IE
dataset used in DBLife [13], which uses the Perl regular esqpr
sion engine for multi-pattern matching. We show that sigiat
improves the performance of ClamAV by 10-12X, Bro by 4X and
DBLife by 15X. To test the scalability of our method for fueur
(larger) signature databases we mimic the ClamAV signatatabase
(which has about 90K regular expression signatures), andioe
synthetic signature databases that have up to 300,000tsigaa
For this large signature database, sigMatch improves thierpe
mance of ClamAV by a factor of nearly 28.

The remainder of this paper is organized as follows. In $edi
we discuss related work. We provide an overview of the system
in Section 3. Section 4 contains our experimental evalnatmd
Section 5 contains our conclusions and directions for &ituork.

2. RELATED WORK

The multi-pattern matching problem has been well studied un
der both the approximate (e.g. [10, 16]) and exact matclkeraoit
(e.g [7,9,14,20]) using both hardware and software methods

The hardware approaches (e.g. [14, 23]) generate multfjge s
cialized circuits for regular expression matching autamab search
the streaming data in parallel. However, such approactebnar
ited and are designed primarily for IDSs where the matchowycs
only in dedicated systems like mail gateways. For generatimu
pattern applications that are usually run on conventiorethines,
such hardware solutions are generally not feasible.

Software methods for exact multi-pattern matching areeeith
shift table or automaton based. The shift table-based rdstfeog. [9,
12,21, 25, 28]) use multiple pre-computed tables to detegrttie
next viable location where a pattern can occur. Automatased
methods (e.g. [7,19, 22]) employ eithebd" A or anN F A-based
representation for regular expressions. While & A represen-
tation is compact in terms of storage, they are generallyeidhan
the DF A representation. However, there is a state space explosion
in the DF' A representation as the size of the signature database in-
creases. Recent approaches [19,22,27] have concentratedue-
ing the memory requirements of DFAs using grouping and rtewri
ing techniques. However, the performance of these systams d
grades when the number of signatures increase beyond a few hu
dred. All of these approaches are complementary to our apgpro
as they concentrate on improving the efficiency of the vexiftn
unit (see Figure 1), and thus can be combined with our apprtzac
further improve the overall performance of the system.

The filtering approaches for pattern matching can be brodidly
vided into two categories — prefix and g-gram based appreache

Prefix-based filters build a set of strings = {p1,p2,..,pn}
such that each signature/pattern in the database has a ipréfix
The string1, p2, ..., p» could be of the same [15] or different [20]
lengths. During scanning, if the pattern at a particulaatmn in
the data item is not irP (determined by either exact [20] or ap-
proximate [15] string matching), then no pattern can be ¢ban
this location and the scanner moves on to the next viablgitota
possibly with the help of a shift table [28]. If the patternedcexist
in P, then some additional computation is performed to detezgmin
whether this particular location contains a pattern in tatabdase.
Most of the previous approaches suggested in literaturenfdti-
pattern matching (e.g. [2,15,20]) have relied on prefixedters.

Filters that use g-grams follow an approach similar to tredipr
based filters but use substrings rather then prefixes. Trenéatye
of g-gram filters is that the cardinality of the sBtis significantly
smaller when compared to prefix-based filters, so they peoeaid
better filter rate, and hence potentially improved perfaroe The



disadvantage of using g-grams is that the entire data itenchae
scanned for the presence of patterns in the case of a match.

Our work is different from these previous efforts as it foesis
on building a generic cache-efficient g-gram based filtenfaiti-
pattern matching that can handle a wide spectrum of paftants
can easily be combined with any existing multi-pattern rizig
application. Also to the best of our knowledge, our efforthe
first one to demonstrate a system that can scales to handle ve
large pattern/signature databases.

3. SIGMATCH

In this section we describe sigTree (the g-gram index thaisee
in sigMatch), and its construction method. But before weileg
with the sigTree description, we briefly present backgroinidr-
mation about Bloom filters, which we use in the sigTree.

3.1 Bloom Filters: Background

A Bloom filter [8] is a bit array ofm bits that is used to check
if an element belongs to a set. Initially all bits in this grere set
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Figure 2: An example sigTree withb=2 and =4 bytes.

At a high-level, the sigTree is essentially a truncated i a
Bloom filter/bitmap at the leaf level of the trie.
Figure 2 shows an example sigTree with four indexed sigeatur

to zero. When an element is added to the Bloom filter, a set of In this figure, each byte in the pattern is represented as aligio

k predefined hash functions are applied to the element torobtai
values. The bit positions corresponding to these valuethareset

to 1 in the array. To ascertain whether an element belongsé, a
the same set df hash functions are applied to the element to obtain
k values. If at least one of the bit positions correspondinthése
values are not set in the bit array, then the element doesahad

to the set. If they are all set to 1, then the elemmaaybelong to the
set. Due to collisions, the Bloom filter can provide falseifpeess,

but it never results in a false negative.

Bloom filters have two main advantages. First, they requss |
space compared to other data structures used for encodisg se
such as tries [20] and hash tables [10]. Second, the time leamp
ity for adding and searching an element is constant indegenaf
the number of elements inserted into the Bloom filter. Of seur
as we “index” more elements in a Bloom filter the probabilify o
collision and the number of false positives increases. Biatdrob-
lem can be mitigated by increasing the number of bits in tleoBI
filter. Starobinski et al. [24] present a detailed analysisfinding
an appropriate Bloom filter size for a desired collision rate

3.2 Overview of the sigTree Structure

In any g-gram based filtering technique, a substring femsauh
signature in the pattern database is indexed in a trie [2@ Bdoom
filter [15]. Tries are generally faster than Bloom filters asthe
latter at least one hash computation has to be performedcat ea
viable location in the data item (and there could be colfisiin
the Bloom filter, which can lead to more false positives, andrp
performance). However, the memory requirement of trieeiseg-
ally greater than that of a Bloom filter. The sigTree combittes
benefits of both these approaches.

An additional issue with tries is choosing the length of thb-s
string from each signature to index. If we pick short sulnsts
then the index will not be very effective as a filter (i.e. ithwesult
in many false positives). On the other hand, if we pick suibgs
that are very long, then the index size will be large. Wherinkex
is large, itis unlikely to fit into the processor caches. Gangently,
node accesses in the trie will be very expensive as they egllire
fetching data from main memory, which is often slower by an or
der of magnitude or more, over fetching data from the pramess
caches. The sigTree addresses these tradeoffs by inteligeck-
ing discriminative short substrings, part of which is inddxn a
trie and the remaining part is indexed using a Bloom filter.

hexadecimal number, and the substring of the signaturaghiat
dexed in the sigTree is underlined. Each sigTree node islkfoo
array of size 256, one for each possible byte value. (This can
be reduced if the alphabet size is smaller, and vice versapri
leaf node has 256 pointers to child nodes. A leaf node couilat po
to a linked list or a Bloom filter, or both. Some or all of thesefl
pointers can be nulls. Each leaf node corresponds to a ustcgog
of lengthb (the height of the tree). This unique string is called the
candidate stringpf that leaf node.

A sigTree is constructed from the signature database byinge
exactly one substring (without any wildcard characters)eofth
b + [ from each signature. Hefeis the height of the index and
0 is the number of bytes indexed in the Bloom filter. The first
bytes of the substring map the signature to a node, and thesnex
bytes following the) bytes in the substring are used to hash into the
Bloom filter at that node using a “set” of hash functions. Tihkdd
lists are used foshort signatureshat do not havé+ 3 consecutive
bytes without any wildcard characters. The sigTree contitrm al-
gorithm is described in detail below in Section 3.4. Next igedss
how the sigTree is used to detect hits/matches in the dae ifsee
Figure 1), and factors that influence the performance ofitiiese.

3.3 Matching with sigTree

Each byte of each data item that is streamed through the sig-
Match filter (see Figure 1) is run through the sigTree. Th&@1Eg
detects a potential match in two cases. A match is referrebto
a true positiveif a pattern in the signature database exists in the
data item and sigTree detects it as a match. On the other Hand,
a pattern in the signature database doesn't exist in theitatga
the match is dalse positive There are two types of false posi-
tives. Type Afalse positives occur when the substring of a pattern
indexed in the sigTree exists in the data, but the actuapfittiern
does not.Type Bfalse positives occur when the substring indexed
in the sigTree doesn’t exist in the data, but a potential madc
detected due to collisions in the Bloom filter.

Since calls to the verification unit (see Figure 1) are expens
for improved performance we want to reduce the number oéfals
positives. Type A false positives can be reduced by incnggitie
length of the g-gram (g% + 3) indexed in the sigTree. However,
increasingb increases the cost of an index node traversal (as the
index is larger and accesses to the index node has a highececha
of leading to a cache miss), while increasifigncreases the cost



of computing the hash functions. A better approach to redlee
type A false positives is to choose substrings from the patteat
are less frequent in the data. We discuss techniques focireglu
type A false positives in Section 3.5.

Type B false positives are dependent on the collision rateen
Bloom filter, which in turn is dependent on the hash functiossd,
the size of each Bloom filter, and the length of the g-gramexed
in the sigTree.

To better characterize design choices that can reduce tie nu
ber of false positives when using a sigTree, consider thieviel
ing performance model for the sigTree, which is similar inrisp
to the performance modeling used in [15]: For simplicityswase
that there are no short signatures in the pattern databakéhan
all leaf nodes are at the same height. pebe the the fraction of
non-empty leaf nodes ang, be the probability that the hash func-
tions return a false positive. Assume that the computatioosts
of the index tree traversal, hash computation and a calleosén-
ification unit arec:, ¢, andC respectively. Then, the cost of the
multi-pattern matching algorithm is:

¢t 4 pe * [en 4 pn o+ C] 1

To maximize performance, we want (a) the sigTree to be Igrgel
cache-resident and (b) the number of calls to the verifioaiiut to
be minimal. Note that the cost of the verification u6itis orders
of magnitude larger thas, andc;, as it often involves at least one
random memory access per scanned byte (and memory access i
orders of magnitude more expensive than a cache accessgoshe
of tree traversat; is lower thanc;, as the sigTree is designed so
that the nodes can generally fit in the L1 cache, while the Bloo
filters generally reside in the L2 cache. $p< ¢, << C. Hence,
we need to keep: andp;, small for improved performance.

The value ofp; depends o, the height of the tree and the sub-
strings indexed in the sigTree. Increasing the height ofitbe re-
ducespy, but it also increases the cost of the tree traversahlso
the height of the tree is restricted by the the shortest sigjaén the
pattern database. A better approach to reguds to pick g-grams
from signatures that minimize the total number of non-emeaf
nodes. We discuss an approach to do this in Section 3.4.

The value ofp;, depends on three factors — the number and com-
putational complexity of the hash functions used, the sizthe
Bloom filter, and the number of patterns allocated to eaclenod
One way to reducey, is to increase the number and complexity of
the hash functions used, but this technique also increhsestue
of ¢,. In our experiments (Appendix C.2), we found that using
a two-level hashing technique with cheap hash methodssoéer
good balance. Consequently, in the remainder of this paparse
a two-level hash functionxpr+shift andRShashas suggested by
Erdogan et. al [15]

Increasing the size of the Bloom filter directly reduges but
also increases the memory usage. We present a detailecdevalu
of the effect of Bloom filter size in Section 4.2.

Overloading a leaf node with a large cluster of signatures ca
quickly increase the probability that a false negative isggated.
Hence for better performance we want the signatures to bayeve
distributed amongst the non-empty leaf nodes — i.e. thenmast
be (nearly) balanced. We discuss techniques for uniforatation
of signatures in Section 3.4.2.

3.4 sigTree Construction

In this section, we describe the method for creating a sigTre
given the set of signaturegig, the height of the treg and the num-
ber of bytes to be hashed in the Bloom filt&r Before we present
the method for constructing a sigTree, we define a few terras th
are used in the discussion below.

Definition 1. A string str is aRepresentative Substrif®S) of a
signaturesig in a sigTreel’ with parameters, 3 if it satisfies the
following conditions.

1.
2.

The stringstr is a substring of the signatukég.

The stringstr has a lengtlb and contains no wildcard char-
acters.

The stringstr has at leas8 bytes following theé bytes with-
out any wildcard characters #ig

If sig has no substring satisfying the third condition, then the
first b bytes of the longest substring without wildcard char-
acters insig is its only representative substring. Such signa-
tures are calleghort signatures

3.

4.

Definition 2. Thefrequencyof a stringstr, w.r.t. a signature set
Sig, is defined as the number of signaturesig for which str is
aRS.

Definition 3. A set of stringsS = {s1, s2, ..., s» }, each of length
b, is ab-gram coverof signature sebig, if every signature irig
has at least one RS i

Definition 4. Let~ be some positive integer. A set of strin§s=
{s1, 82, ..., sn }, €ach of lengttb, is defined to be gb-gram cover
of signature seb'ig, if every signature inSig has at leasy or all
gf its RSs (if it doesn’t have RSs) inS.

The sigTree index construction involves a preprocessieg &t
prepare the signature database for indexing, and the aiciex
construction step. Each of these steps are described below.

Preprocessing: To construct a sigTree on a signature database,
we require that each signature in the database have at)least
secutive bytes without any wildcard characters. Howewgs,¢on-
dition may not be satisfied by certain signatures. For sughasi
tures, we use simple rewrite rules to convert them into exjeiv
signatures that have at ledstonsecutive character bytes. For ex-
ample the signaturd|a]b[C|c] is equivalent to the four signatures
Abe, AbC, abC andabce. We use similar rewrite rules in our imple-
mentation to ensure that we can find at least one substringcin e
pattern to index in the sigTree.

Index Construction: The sigTree index is constructed using
four steps.

The first step is to construct a b-gram covefor the signature
set. The cardinality of the b-gram cover must be small (tcimize
pt, the fraction of non-empty leaf nodes). A greedy algoritton f
constructing an effective b-gram cover is discussed iniGe&t4.1.

Next, an empty sigTree structure is created using the b-gram
cover S, where each leaf node with a candidate stringirs as-
signed an empty linked list and a Bloom filter, while all otheaf
nodes point to null.

The third step is to allocate signatures amongst these ndtlese
signatures must be equally distributed among the non-engiigs
for better performance. We discuss an approach for effecig-
nature allocation in Section 3.4.2.

The final step is to fill the Bloom filter and the linked list atba
non-empty leaf node with the strings from the signature lukztea
allocated to that leaf node. We describe our approach fertésk
in Section 3.4.3.

The pseudo code for the sigTree construction algorithm @n b
found in Appendix A. A detailed example of sigTree constiatt
can be found in Appendix B.

3.4.1 b-gram Cover

The goal of this step is to find a b-gram cover for the signature
setSig, whose cardinality is minimal over all possible cover sets.



Since a brute force approach for finding a minimal b-gram cove
volves searching an exponential number of possibilitiessuggest
a greedy approach. The intuition behind the algorithm ilews:
Since most real datasets are neither random nor uniforndistie-
bution of the frequencies of b-grams is expected to be skewied
exploit this feature to build an effective b-gram cover. Expecta-
tion here is that choosing b-grams with the highest freqiesnaill
lead to a more effective (i.e. smaller) cover set.

The algorithm works as follows: First, the b-gram that has th
highest frequency for the signature s#fy is added toS, the b-
gram cover. All signatures that have this string as a RS ae th
removed from the signature set. The b-gram with the secagta hi
est frequency is picked next, and this process is repeafethe |
addition of a b-gram t& doesn’t result in any signature being re-
moved fromSig, then it is removed frond' as all the signatures for
which this b-gram is a RS have already been accounted fordy th
other strings inS. This process continues until all signatures have
at least one RS i

Next, we refine this set by removing any “redundant” strings.
b-gramstr in a b-gram coverS of a signature sefig is said to be
redundantif S — {str} is also a b-gram cover dfig. The simplest
method to remove redundant substrings is to remove ongsitia
time from S and test whether the remaining strings form a b-gram
cover. However, the order in which the strings are testeerdgnes
the number of strings that can be removed. But, we know tteat th
b-grams added towards the end of the last iteratio§ &re RSs
of signatures that have few RSs, and are hence more likelg to b
present in the minimal b-gram cover. So now we loop through th
setsS in reverse, starting with the last added string. If we find tha
a b-gram inS is not a RS of at least one signature $fig that
has no other RS ii¥, then that string is removed from the sgt
Empirically, we have found that this refinement step de@edise

length is less thag.

However, if the allocation is uneven, this task is not tfivias
stated earlier (Sections 3.2 and 3.3) overloading a nodeanirge
cluster of signatures increases the number of false pesitjen-
erated, which adversely impacts performance. One way toeadd
this issue is to use a b-gram cover that facilitates unifdtatation.

To do this, we can construct a b-gram coxefor the signature set
Sig such that each signature ffig has at leasyy RSs inS, where

~ is a positive integer greater than 1. This technique endhis
each signature il§ig has at leasy candidate nodes, which reduces
the chance of uneven allocation. However, the drawbackisgr
proach is that it increases the cardinality of the b-gramecavhich
affects the throughput of the system (as it increasethe fraction

of non-empty leaf nodes — c.f. Section 3.3).

The drawback of the approach above is that the cardinality of
the b-gram cover that we find is likely to be larger than thea-opt
mal b-gram cover that we find using the method described in Sec
tion 3.4.1. Since we want to keep the cardinality of the bygra
cover to be as low as possible, we use the following alterapte
proach: Each non-empty leaf nodéthat has more than a certain
number of patterns allocated to it (higher than a thresiidld X),
is split, and the strings iy are indexed in its children. The first
byte of each string i/ determines the child node where it is in-
dexed. The remaining bytes of each string are hashed in thenBI
filter or stored in the linked list at the appropriate childdeo The
pseudo code for this algorithm can be found in Appendix A.1.2

3.5 Data-Conscious sigMatch

Previous filter-based structures [15, 20, 28] that have hesexd
for multi-pattern matching, have not exploited the chaggstics
of the underlying data items that are being matched agdiestiy-
natures. However, exploiting the underlying data charésttes

cardinality of the b-gram cover by as much as 20%. The pseudo offers many opportunities for improving the performancerfiti-

code for this algorithm is shown in Appendix A.1.

3.4.2 Signature Allocation

In this step, we assign each signature in the signatur8igeto
exactly one leaf node in the sigTree. A leaf node in the sigTse
referred to as @andidate nodef a signaturesig if the candidate
string of the nodetr is a RS ofsig, andstr is in the b-gram cover
S. The simplest approach for signature allocation is to piclode
from the set of candidate nodes at random for each signature i
the database. However, for improved performance, the nuofbe
signatures at the non-empty leaf nodes must be (nearlyhteda
in the sigTree, so that none of the Bloom filters are overldade

To achieve this goal, we follow two simple rules. First, a-sig
nature is assigned to a node only after all signatures witrerfe
candidate nodes have been allocated. Second, given a setdif c
date nodes for a signature, we always pick the node with st le
number of signatures allocated to it so far. Once a signasiako-
cated to a nodéV, the next3 bytes following the candidate string
in the signature is stored in an arr&y corresponding to the node
N. Since short signatures do not havéytes following the candi-
date string without any wildcard characters, the lengthefstring
stored inVy is less than3 bytes long for these short signatures.
The pseudo code for this method is shown in Appendix A.1.1.

3.4.3 FillNode

The goal of this step is to populate the Bloom filter and linked
list at each sigTree leaf nod® with the strings from the array
Vi corresponding to that node. If the allocation of signattises
uniform, this task is simple as each string in the afrayis inserted
into the Bloom filter if it is3 bytes long, or into the linked list if its

pattern matching systems.

We have also designed techniques that make the sigTree “data
conscious”, to reduce the number of false positives thagarer-
ated when using the sigTree. The basic idea here is to obteve
underlying data characteristics and continuously adapsifTree
structure so that the most “discriminative” strings (i.ée tones
that are most effective in filtering out data items) from thgna-
ture database are indexed.

Appendix B.1 presents the data-conscious adaptation cfighe
Match approach, and also presents results demonstragreffac-
tiveness of this data-conscious approach.

4. EVALUATION AND RESULTS

In this section, we describe the results from our experisient
We tested sigMatch by integrating it with three real-wogdtems;
namely, Bro — a network IDS, ClamAV — an anti-virus systend an
DBLife [13] — an |IE system that focuses on content of intetest
the database community.

DBLife uses aregular expression library of about 61K sigret
to match newly crawled documents to find mentions of ent{geas.
people and universities) that it is tracking. DBLife curigruses
Perl for matching the regular expressions. (Perl has anyhigfti-
mized regular expression evaluation engine.)

Both Bro and ClamAV have been the focus of many pattern
matching techniques (e.g. [15, 19, 20, 27, 28]). They are lafgh
already highly optimized, as they are actually deployedratiice.

In addition, both have actual and large signature databases

Using these three real-world systems we perform actualtend-
end evaluations of sigMatch.

In our evaluation, we focus on three metrics: Throughpugesiop
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sigTree size (KB) L1 Cache Misses (in millions) L2 Cache Misses (in millions)
System Nodes only| Nodes+BF| w/o sigMatch | w/ sigMatch | % dec | w/o sigMatch | w/ sigMatch | % dec | Speedup
ClamAV (90K sigs) 23 2700 603.1 76.2| 87.4 139.8 3.9 97.2 11.7X
Bro (1.2K sigs) 17 970 4413 103.6] 765 81.7 9.8| 88.0| 4.4X
DBLife (61K sigs) 21 2400 764.3 152.1| 80.1 176.4 15.7| 91.4 15X

Table 1: L1 and L2 cache misses for ClamAV, Bro and DBLife withand without sigMatch. Also shown in the memory usage of
sigTree with and without Bloom filters (BF). ClamAV results are for the 100MB exe corpus usingb=2, 3=6 bytes, Bloom filter size =

2! pits. Bro results are for a scan on the TCP payload for Tuesda®6/03/98 withb=2, 3=3 bytes, Bloom filter size =2'* bits. DBLife
results are for a scan on 100 MB collection of web pages with=2, 3=4 bytes and Bloom filter size =2'* bits.

and Filter RateThroughpuis defined as the amount of data scanned of data.

per second.Speedups defined as the throughput achieved by the
system after integration with sigMatch divided by the thgbput
of the original system (i.e. without sigMatchFilter rate is the
fraction of the data items thrown out by sigMatch, i.e. theefion
of data items that are true negatives as detected by sigMatch

All experiments were run on a 2.00 GHz Intel Core 2 Duo pro-
cessor with 3 GB RAM with Ubuntu 8.04 OS, 32 KB L1 cache and

Figure 3 shows the comparison between the throughput of Cla-
mAV with and without sigMatch. The speedup achieved by inte-
grating sigMatch with ClamAV varies from 10-12X depending o
the type of the corpus. The primary reason for the improverigen
the difference in the cache misses between sigMatch andAMam

The ClamAV data structures require nearly 21 MB of memory
in this experiment. Since the L2 cache is only 2MB, most of the

2 MB L2 cache. The cache misses quoted in the experiments werestructure resides in the main memory. As a result, ClamAdisen

measured using the cachegrind tool in Valgrind [6].

4.1 Comparison with Current Systems

4.1.1 Comparison with ClamAvV

ClamAV is a popular open-source AVS. Currently, ClamAV has
545,191 virus definitions in its database. However, onl®89,of
these signatures aregular expressiomand they account for 99.3%
of the total scanning overhead in ClamAV [28]. (The othensig
tures are MD5 hashes, which can directly be passed to ClanV.
our evaluation, we use this set®BOK regular expressions as our
signature database.

ClamAV uses a combination of banded row AC [7] and extended
BM [9] algorithms to perform multi-pattern matching. In @mto
test the system we generated four corpuses, each contairtioly
lection of files of a particular type. The first corpus, laleks
exe, was created from widely used Windows executables like MS
Office, Firefox etc. Conference papers from SIGMOD 2009 was
used to create the second corpus, which is labelgdifasThe third
corpus,html, contains html data from a crawl of the top 100 most
popular websites in the United States (obtained from Ale{a [
The last corpus, labeled aandom, is made up of randomly gen-
erated files. We chose these file types as virus scannersrpyima
concentrate on executable files in personal computers,ndects
in mail servers, and html files in mail gateways and routecsfat
cilitate comparison, for each corpus we used only the firéiMB

to require at least one random memory access per scanned byte

On the other hand sigMatch uses a compact indexing structure
(sigTree) which occupies less than 3 MB (for 90K signatureba
Bloom filter size of2'* bits). Consequently, a significant portion of
the sigTree can fitin the processor caches. Also, sinceatdades
of the sigTree need less than 32 KB memory (Table 1), they tend
to fit within the L1 cache. Since most of the leaf nodes are gmpt
(in the above experiments the fraction of filled nodes= 0.03),
sigMatch requires only L1 cache accesses most of the time. Th
sigMatch method reduces the number of cache misses significa
as (a) most of its data structure is cache-resident and (Is) tca
ClamAV are rare (the filter rate is between 0.93 and 0.96 f@ th
experiment).

For example, in the above experiment with the corpus, inte-
grating sigMatch with ClamAV reduces the L1 and L2 cache gsss
by 87.4% and 97.2% respectively. Table 1 (row 1 below the titl
row) provides detailed cache miss and memory usage statisti

4.1.2 Comparison with Bro

In order to test with Bro, we used the Snort [4] signature set,
which has 1,200 signatures. Bro builds a DFA “on the fly” to-per
form multi-pattern matching. The regular expression patehat
match the same kind of network traffic are grouped to cope with
the exponential number of DFA states. The scans were pegfbrm
on real world TCP packet traces obtained from the DARPA @#tas
provided by MIT Lincoln Laboratory [3]. We used a smalf@i(3



Memory Usage (in MB) | L1 Cache Misses (in Millions) | L2 Cache Misses (in Millions)
DB Size | ClamAV |  sigMatch | ClamAV | sigMatch+ClamAV | ClamAV | sigMatch+ClamAV | Filter Rate | Speedup

30k 8.2 1.4 352.2 66.3 42.5 15 0.958 8.5x
90K 211 2.7 603.1 76.2 139.8 3.9 0.947 11.7X
150K 40.5 3.7 2280.2 93.5 179.2 6.9 0.945 19.7X
300K 81.1 5.1 3051.9 121.2 272.7 19.0 0.939 27.8X

Table 2: L1 and L2 cache misses, and memory usage for signatidatabases of different sizes. Results are for the 100M#&Xe corpus
with ClamAV, b=2, 3=6 bytes, Bloom filter size =2'* bits.

bytes) in our experiments with Bro as the signatures in therfSn  sigTree structure can fit in the L2 cache even for 300K sigeatu

dataset are shorter than those in the ClamAV database. On the other hand, the memory consumption of the ClamAV data
Figure 4 shows the comparison between Bro and sigMatch+Bro structure increases by nearly 10 times as the number of tsigrsa

for the TCP payload captured for each day during a particuésk increases from 30K to 300K. ClamAV has a memory usage of 8.2

(05/03/98 — 09/03/98). The sigMatch method improved théoper MB for 30,000 signatures, and 81.1 MB for 300K signatures. As

mance of Bro by a factor of 4, as it dramatically decreaseahtims- a result, the decrease in cache misses due to the additiag-of s

ber of cache misses. For example, for the TCP payload capture Match also increases rapidly as the size of the signaturbeaée
Tuesday 06/03/98, the L1 and L2 cache misses were reduced byincreases. Consequently, while the integration of sighlaeduces

76.5% and 88% respectively. the L2 cache misses by around 40 million for 30K signaturs, t
Table 1 (row 2) shows the detailed cache miss and memory usagenumber increases to more than 250 million for 300K signature
statistics for this experiment. The memory usage of sigMatch and ClamAV, and the cache miss
statistics for the system with and without sigMatch, forfetiént
413 Comparison with DBLife signature databases is shown in Table 2.

We performed similar experiments with the Bro dataset and ob

The DBLife signature database consists of 60931 regulaesx
g g P tained similar results which are omitted in the interestpcse.

sions that provide the name variations of prominent unitiessand
researchers in the database community. DBLife uses thedgerl . .
ular expression matching engine for multi-pattern matghiRerl 4.2 Effect of Bloom Filter Size

builds a DFA to match the text against the patterns. We iategr In this experiment we used the synthetic signature dataluese
sigMatch with this system and used a collection of 9914 web do  scribed in section 4.1.4 and compared the speedup achigvied b
uments £100 MB) for testing. tegrating sigMatch with ClamAV for different Bloom filterzgs.
SigMatch (withb=2, 5=4 bytes and Bloom filter size 2'* bits) Figure 6(a) and (b) shows the effect of changing the Bloom fil-
has a filter rate of nearly 97% and improved the throughpuheft ter size on the filter rate and the speedup respectivelyjdoasure
multi-pattern matching system by a factor of nearly 15. This databases ranging from 30K to 300K signatures. From Figlake 6
provement is due to the decrease in the number of L1 and LZcach we see that initially the filter rate improves rapidly as tHedn fil-
misses when sigMatch is integrated into the system. In gaisgp ter size increases. But, after a certain limit, around 16K ibimost

ular experiment, sigMatch reduces the L1 and L2 cache misges cases, there is diminishing return in the improvements édfitter
80.2% and 91.4% respectively. Table 1 (row 3) gives the mgmor rate. In fact, as shown in Figure 6(b) after this limit, penf@nce

usage and cache miss statistics for this experiment. actually degrades.
This behavior can be explained by examining the cache miss
414 Scalability Comparison numbers shown in Figure 6(c) for the 300K signature datatfese

small Bloom filter values, the filter rate is low and hence healt

the data items are sent to ClamAV (compare the lines for CMmA
and sigMatch+ClamAV in Figure 6(c)). As a result, incregsine
Bloom filter size only marginally reduces the overall numbgkL2
cache misses. However, as the Bloom filter size increas#sefur

the filter rate increases and the L2 cache misses decreadly iap

an increasing number of data items are discarded by the(Bitere
most cache misses are caused by random memory accesses of Cla
mAV). At this stage, increasing the Bloom filter size incremshe

L2 cache misses incurred by sigMatch, but decreases thearumb
of data items sent to ClamAV due to the increase in the filter, ra
and overall system performance improves. The performahtteeo
system degrades when the increase in the sigMatch cachesmiss
is not compensated by a decrease in the number of ClamAV cache
misses due to the increase in filter rate. This degradatippéres
sooner for larger databases as their sigTree structure hagexr
memory requirement.

In order to test the scalability of the system, we developsyha
thetic signature generator, similar to the one used in Eadogt
al. [15], to create larger signature databases that emiliatehar-
acteristics of the real signature database. Using thisrgarewe
generated virus signature databases that have up to 300l&-sig
tures, using the original ClamAV signature database as thaem
Figure 5 shows the difference in throughput between ClamAV
and sigMatch+ClamAV for signature databases of variousssias
can be seen in this figure, the speedup achieved by using kigMa
increases rapidly as the size of the signature databaseases.
While for a database of 30K signatures, the speedup achisved
only 8.5, sigMatch provides a speedup of nearly 28 for a detab
of 300K signatures. The primary reason for this behaviohat t
the memory usage of the sigTree structure increases at astnode
pace as the size of the signature database increases. Faplexa
the sigTree for 30K signatures has a memory requirement4of 1.
MB, while that f0{4300K signatures needs around 5 MB when each
Bloom filter has2"* bits. .
This modest increase in the sigTree size is because the memor 4.3 Effect of Other S'QTree Parameters
usage of the sigTree is dictated only py (the fraction of non- The other sigTree parameters that can impact the perforenainc
empty nodes in Eq. 1) for a given Bloom filter size, and thegase sigMatch are:b — the height of the tree3 — the number of bytes
in p; with the the number of signatures is modest. Even for 300K indexed in the Bloom filter, and the Bloom filter hash funciom
signature; is less than 0.08. Hence, a significant portion of the our experiments, we keégfixed at 2 as the longest substring (with-
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out any wildcard characters) of the shortest signaturd thaltthree
signature databases is 2. Increasthdoesn’t have a major impact

on the performance of the system as the increase in the fiter r
is compensated by the increase in hash computation timehand t

number of signatures stored in the linked lists. Increa#iieghum-
ber of hash functions used improves the filter rate but irsgsdhe

hash computation time in the case of a match. In our expetsnen
we found that using a two level hash functions provides tr& be
performance. These experiments are discussed in mord oetai

Appendix C.
5. CONCLUSION AND FUTURE WORK

In this paper, we have presented sigMatch, a generic, dealab

and efficient method for evaluating multi-pattern matchir@ur
method leverages the insight that in many applications} mesit
data items do not match with any member in the signature daéab
We have developed a cache-friendly index structure thatieiffily
filters a large number of these “no-match” cases. Using ratd d
sets we demonstrate that sigMatch significantly improvesptr-
formance of three state-of-the-art multi-pattern matgtsgstems
that are used in diverse domains. In addition, using syittis&-
nature databases, we show that sigMatch scales well todnaed}
large signature databases.
exploring extension of sigMatch for multi-cores. We alsampl
on developing similar techniques to speed up approximatempa
matching. The idea here is to design a cache-efficient streict
similar to the sigTree structure, to speed up appoximatéagiity
matching.
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APPENDIX Algorithm 3 SigAlloc
A. SIGTREE CONSTRUCTION Input:  Signature Seb'ig; S, the b-gram cover; height of the tree

b; 3, the number of bytes hashed in the Bloom filter
In this section we present the pseudo code for the sigTree con Qutput: V, the set of strings to be indexed in each node.
struction. The approach is described in Section 3.4.

Algorithm 1 outlines our approach for constructing the seg SortSig based on the number of candidate nodes.
given the height of the trefg the number of bytes to be hashed into for i «— 1tolength(Sig) do
the Bloom filter3, and the signature sétig. N « Candidate Node ofig[i] with least number of sig-
natures allocated to it
Algorithm 1 Construct sigTree str « Candidate String oV

Input: Signature Sefig; height of the treeb; 3, the number of Add next bytes followingstr in Sigi] to Viv

bytes hashed in the Bloom filter return vV
Output: sigTreeT

Sig — rewrite(Sig) A.1.2 FillNode

S « b-gram CovefSig, b, 3) Algorithm 4 (described in Section 3.4.3) presents our metho

T « createTre@, S) for populating each non-empty leaf node. The method works as

V « sigAlloc(Sig, S, b, ) follows: If a node is not overloaded (i.e. the number of signes

for each non-empty leaf nodé&V in 7" do allocated to it is not greater than some threshfdl X), then the
FillNode(N, Vi, 5) strings in the corresponding arrdyy are indexed in the Bloom

return T filter, or the linked list depending upon their length. If adeois

overloaded, it is split, and its signatures are allocatettiécappro-
priate child node.

A.1 b-gram Cover

Algorithm 2 presents the pseudo code for constructing asceff
tive b-gram covelS given the signature selig, the height of the
treeb, andj — the number of bytes to be hashed in the Bloom filter.
The method is described in Section 3.4.1.

Algorithm 4 Fill Node

Input: N, a leaf node}Vn, the set of strings to be indexed iv;
3, the number of bytes indexed in the Bloom filter.

N; « Linked List at Node N
N, «— Bloom Filter at Node N

Algorithm 2 b-gram Cover if length(V) < MAX then
Input: The signature sefig; the height of the treg; 3, the num- for k «— 1tolength(Vy) do
ber of bytes hashed in the Bloom filter if length[Vn[k]) < Bthen
Output: b-gram CoverS Add Vy [k] to N
else
Str — All possible strings of length Add hash(Vy[k]) to N
SortStr based on frequency. if length(Vn) > MAX then
Setl, Set2 «— Sig newN « splitNode(N)
S —{} for k «— 1tolength(Vy) do
str « String in Str with the highest frequency ind «— first byte of Vv [k]
while Set1 is not emptydo Add rest(Vn [k]) t0 newV,cwNiing
Found « signatures irfet1 for which str is a RS for i — 1tolength(newN) do
if Found is not emptythen FillNode(newNi], newVyewnpi, 6 — 1)
Remove all signatures iflound from Set1 return
Add strto S

str < String in Str with next highest frequency
for i < length(S)to1 do
Found « signatures irSet2 for which S[i] is a RS

B. AN EXAMPLE

if Found is not emptythen In this section, we present an example of the sigTree cast&iru
Remove all signatures iRound from Set2 for the signatures given below.
else , Sig 1: 10cd21eff85a59b4406606e81902b440cd21
RemoveS[i] from S )
return S Sig 2: 41cd21efffOb788ffbd46606245d97373

Sig 3: 305145d691*3430abacd214?767692¢fffc278
Sig 4: 6606cd213478710b126578*a789
A.1.1 Signature Allocation Sig 5: 617476766€20636fefff 670757465210ca204e

Algorithm 3 presents the pseudo code for an effective allona Sig 6: 88ffeadbal
method that aims to keep the number of signatures allocateaich I . oo .
leaf node as uniform as possible. The inputs to this funaierthe Sig 7: 7666abddb176606ab??ccea’c/ 77888
signature sebig, the height of the treé, and 3 — the number of For this example, let the sigTree parametershbe2 andg =
bytes to be hashed in the Bloom filter. The method is desciibed 4 bytes. Each byte in the signature is represented as a tito dig
Section 3.4.2. hexadecimal number for convenience. The wildcard charétte




is used to indicate that any number of arbitrary bytes cart bteat
location, while the character “?’ is used to indicate thatak one
arbitrary byte can be at that location.

The first step in the sigTree construction is to find an effecti
b-gram coverS for the signature set. The approach (Algorithm 2)
that we use has three sub-tasks.

In the first sub-task we sort the set of all b-grais- based
on their frequency and create two copies of the signaturéagt
namelySet1 andSet2.

In the second sub-task we use a greedy approach to build a
gram coverS. Here we add the b-gram with the highest frequency
strto S and remove all signatures that haste as a RS fronbet1. (s [EBadT < " A
The string with the next highest frequencySir is then picked and Jlotiel RS Slololgl
this process is repeated. A string is only added tibit is a RS of olifofolo TR
0[1]0[0[0

at least one signature left iflet1. This sub-task terminates when
Set1 becomes empty.

In the final sub-task we refind by removing the redundant
strings inS. In order to do this, we loop through in reverse, Figure 7: An example sigTree.
starting with the last added string. For each b-gram, we wenadi
signatures irSet2 which have this b-gram as a RS. If no signature
in Set2 has this b-gram as a RS then it is removed fiSras it is 7666, 88ff, 7676, 6606, 7676 and6606 respectively. Signature 2
redundant. has two candidate nodes38ff and6606. The nodessff is picked

In the example above, the RS responsible for each signadure t as it has fewer signatures allocated to it.
be removed fromSet1 (second subtask) is marked in bold, and  The last step is to populate the Bloom filter and linked list at

underlined forSet2 (in the third subtask). the leaf nodes. Other than the four nodes correspondingeto th
First we sort all the 2-grams based on their frequency. diyti  strings in S, all other leaf nodes are empty. As the node corre-

the setSet1 has all the signatures ifiig. The 2-gram$606 and sponding t67666 has just one short signature, it only has a linked

cd21 have the highest frequency of 3. list. As 88ff has a short as well as a regular signature assigned to it,

Lets say we pick6606 first. It is added to S, and signatures 1, it has a linked list and a Bloom filter. Since the other nod&76
2 and 4 are marked as found and removed from Set1. Note that al-and6606) have only regular signatures assigned to them, they only
though6606 is a substring of signature 7, itis not a RS asitdoesn’'t have a Bloom filter each.
have 3 characters following it without any wildcard characters in Figure 7 shows the sigTree built for the signatures.
the signature.

Next, we pickcd21. However it is not added t&' as all the B.1 Data-Conscious SigMatch
signatures that havad21 as a RS have already been accounted for The intuition behind data-conscious multi-pattern matghis as

by 6606. . : .
. . follows: If the data being scanned is uniformly random, thies
Next, we have three 2-grams with the next highest frequeficy o choice of strings (from egch pattern in the signyature dampthat

2, namelyefff, 7676 and 88ff. Lets say we piclefff first. It is . . .
added toS and signature 5 is removed from Setl. N&gi76 is \t/(\gfnlndex in the sigTree does not affect the performance ofyse

aqlded tos and S|gna_ture 4 is removed from Setl. NOW we are left However, the distribution of patterns in the data encowtén
with only the short signatures 6 and 7 each of which have gxact T )
real world application is often skewed. Ideally, we woulkklito

one RS each 88ff and7666 respectively. So these two 2-grams . . - . .
; : pick the strings (for indexing) that have the least freqyeincthe
are added t& and the second sub-task is completed as Setl is now data that is going to be scanned (i.e. are highly selectivel

empty. Now,S = {6606,efff,7676,88ff, 7666 }. oM . -
. ' . sample of the data that the application will encounter islalvke
Now we move to the third sub-task and refiieby removing beforehand, it can be used to construct a sigTree which & dat

the redundant stringsiet2 now contains all the signatures ffig. conscious

Firstwe check_7666 asitwas the 2-gram last added$oSignature Unfortunately, for many applications such as AVSs and IBSs,
7 has7666 as its RS, and is removed from Set2. Next we (@6l . . . :
representative dataset is not readily available as thettataen-

and remove signatures 2 and 6 from Set2 as they Baffeas one counter varies widely from one system to another. Also inynan

of their RS. Next, we p'(.3k7676 and_remove §|gnatures 5and 3 multi-pattern matching applications the data encountetexhges
from Set2. Therefff is picked but since all signatures that have ; L . .
over time. Hence, in this section, we propose an online naetbio

efff as a RS have already been removed from Set2, it is rEdundammodifying the sigTree using the data obtained after obsgrtie

and hence removed froifi. Finally, 6606 is picked fromS and g h . . >
. L. behavior of the system for a particular period of time. Thesipd
signatures 1 and 4 are removed from Set2, and the secontidtera of time is referred to as theonitoring phase

is terminated as Set2 is now empty. The b-gram cdver {88ff, Instead of indexing one substring from each signature ifrsig;

7666, 7676, 6606} - . . ; ;
’ ’ T . . ) the data-conscious sigMatch indexesubstrings from each signa-
w;f?ritn:(;(rtt frt]ipszsr?;%l??etfgu al:;za;'jogn(ﬁgeor:ﬁmg;)afl T:z;f\ngi%ate ture. Then during the monitoring phase, it gathers statisth these
9 g ~ substrings. At the end of the monitoring phase, it then psuhe

npdes tha.t they have, ar)d then gllocate them in that orderh Ea index and only assigns each substring to one node. Theseatp
signature is allocated to its candidate nadewhich has the least described in more detail below.

Qgg]bﬁ_\ ;?Li?g%tu{é Sc?:%?ggfg st(t)rilrtl. ngr ?g:\ljfgs'e; cg 5‘“:561 For the data-conscious sigMatch, the initial index corcsiomn
Y 9. 519 » 008 step has to find gb-gram cover for the signature set (instead of a

have exactly one candidate node each and are allocatedriodies simpler b-gram cover). The original index constructionpstsee



Section 3.4) is modified to assignnodes to each signature if pos-
sible. The rest of the index building steps remain the same.

Then, during the monitoring phase, we collect statisticaiathe
number of false positives that are detected at each nonyelegut
node.

After the monitoring phase, we pick all leaf nodes that haeeem
than a certain number of false positives decisions for tgleEach
leaf node marked for deletion is then removed, if possibldea§
node can be deleted if every signature allocated to it has ake-
cated to at least one other leaf node. The order in which weotry
delete the nodes determines the number of nodes that algactu
removed. The goal here is to reduce the number of false pesiti
by the largest possible value. For this part, we employ adyee
approach that sorts the leaf nodes marked for deletion baséuk
number of false positive decisions that they made. We theove
the nodes in this order starting with the node that made tigesa
number of false positive decisions.

Once all removable nodes are deleted, each signature imtababse
can still be allocated to as many-asodes. Next, we prune the tree
further such that the fewest possible leaf nodes are leftamopty
(to reducep:, the fraction of non-empty leaf nodes). For this step,
we use an approach similar to the one described in Sectiof.3.4
We first sort the signatures based on the number of nodeshiat t
have been allocated to. For each signature, we then pickatie n
with the least number of signatures assigned to it, as loitgsasot
zero. If all candidate nodes of a signature have no signatite-
cated to them, then we pick a random node amongst these shoice

Periodically, as the data changes, we use the original sgTr
constructed using theb-gram (a copy of this sigTree can be stored
after it is first constructed above, so that it does not havbeto
rebuilt), and re-tune the tree.

Section B.1.1 describes our approach to build a DC sigTree (d
ing the monitoring phase), and Section B.1.2 presents qamoaph
to tune this structure according to the statistics coligcharing the
monitoring phase to produce the “production” sigTree.

Algorithm 5 Construct DC sigTree

Input: Signature Sefig; height of the treé; 3, the number of
bytes hashed in the Bloom filtef;, the number of nodes each
signature is allocated to.

Output: sigTreeT

Sig < rewrite(Sig)

S « ~b-gram Cove(Sig, b, 3,7)

T « createTre@, S)

V «— ysigAlloc(Sig, S, b, 3,7)

for each non-empty leaf nodé&v in 7" do
FillNode(N, Vi, )

return T

B.1.1 DC SigTree Construction

Algorithm 5 shows the pseudo code for constructing the DC
sigTree that is used in the monitoring phase. It is similath®
sigTree construction algorithm discussed in A, but with omei-
fication. Instead of allocating each signature to one nodeaho-
cate it to as many agnodes. So instead of finding a b-gram cover,
we find ayb-gram cover for the signature s€tg.

An effective yb-gram cover can be found by using a technique
similar to the one described in Algorithm 2. The signature-al
cation algorithm also varies from the technique descritredli
gorithm 3. Instead of allocating a signature to the candidetde
with the least number of signatures, a signature is allacttehe

12 o sigMatch « DCsigMatch

i

Speedup
?

o

0 00001 .00005 .00010
0
Figure 8: Comparison between sigMatch and DC sigMatch

with ClamAV for different 6. These results are for a scan on a

50 MB random corpus using the the ClamAV database (89,903
signatures).b=2, 3=6 bytes, Bloom filter size =2 bits, v=5.

candidate nodes which have thefewest signatures allocated to
them.

B.1.2 DC SigTree Tuning

Algorithm 6 gives our approach for tuning the sigTree acouyd
to the data characteristics.

During the monitoring phase, we collect the number of false p
itive matches detected by the Bloom filter at each non-engaf |
node.

After the monitoring phase all nodes that produced more than
o false positives are marked for potential deletion. Eachhebé
nodes are then deleted if possible. A node can be deleteéiy ev
signature allocated to it is assigned to at least one othge.nOnce
all removable nodes have been deleted, we then remove altithe
ditional assignments for each signature in an effective which
ensures that the resulting tree has the least number of mqitye
leaf nodes.

Algorithm 6 Tune DC sigTree

Input:  Signature Sebig; +, the number of nodes each signature
is allocated toy, parameter for node removal; sigTrée

N « set of non-empty leaf nodes h
Collect no. of false positives detected by each nod¥ iduring
the monitoring phase.
sort N based on no. of false positives detected
Remove — {}
for i < length(N) do

if N[i] < d then

break;

Add N[i] to Remove
for i « length(Remove) do

Delete Removeli] from T if possible
Remove additional assignments for each signatursiin

B.1.3 Evaluating Data-Conscious SigMatch

To test the data-conscious sigMatch (DC sigMatch), we gener
ated corpuses that produce more type A false positives (gee S
tion 3.3) using the following method: First, we collectedubset
QG of the g-grams indexed in the sigTree from the 89,903 signa-
tures in the ClamAV database. Then, we interleaved a randoml
chosen member fron@G into certain locations (chosen with a
probability #) in therandom corpus described in Section 4.1.1.

Figure 8 compares the speedup achieved using sigMatch and DC
sigMatch for different values @f. The parametef provides a mea-
sure of the number of type A false positives detected in thpus
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Figure 9: (a) Filter rate and (b) Speedup achieved after inte
grating sigMatch with ClamAV for different 3 (number of bytes
hashed in the Bloom filter) at various Bloom filter sizes. The e-
sults are for a scan on a 100 MB collection of executable files.
The sigTree parameterb=2.

When 6=0, the filter rate offered by sigMatch is very close to 1,
so very little improvement is achieved by tuning sigMatchbe
data-conscious. However, as we increésthe speedup achieved
by sigMatch reduces rapidly, as the filter rate achievedsicye to

an increase in the type A false positives. In contrast, therfiate

of DC sigMatch is not affected, and its speedup remains/faoh-
stant. DC sigMatch improves the speedup achieved by sigMatc
by a factor of nearly 3.5 for & value of 0.0001.

C. EFFECT OF OTHER SIGTREE PARAM-
ETERS

The sigTree parameters are the tree heighhe length of the
string indexed in the Bloom filteB, the set of hash functions used,
and the Bloom filter size. The effect of Bloom filter size has al
ready been discussed in detail in Section 4.2. In this seatie®
discuss the impact of the other parameters namilyi, and the
hash functions.

In our experiments, we kedpfixed at 2 as the longest substring
(without any wildcard characters) of the shortest sigratorboth
the ClamAV and Bro signature databases is 2. Also incredbiag
tree height increases the memory consumption of the trematra
ically as each node consumes about 1024 bytes. Even for thos
signature databases that have a longer minimum length, coere
mend building the tree to height 2 and then splitting a nodg ibn
it has more than a certain number of patterns assigned tchis T
technique can quickly reduce memory usage as very few nades a
expected to be “crowded” because of the way signatures kre al
cated (section 3.4.2).

C.1 Effect of the Number of Bytes Hashed in
the Bloom Filter ()

Figure 9 shows the effect of the paramefteon the filter rate
and the speedup achieved when integrated with ClamAV. This e
periment used a 100 MB corpus of executable files, and th&89,9
regular expression signatures in the ClamAV signaturesasta

As can be seen in Figure 9, increasifigloesn’'t have a major
impact on the performance of the system. Normally we would ex
pect increasing’ to increase the filter rate by reducing the number
of type A false positives (see Section 3.3) detected. Howéne
our experiments we found that increasifigloes not improve the
filter rate (see Figure 9(a)). Consequently, the speedulsdsrent
significantly affected bys (see Figure 9(a) (b)). This indicates that
signatures in this real world applications are distinctegio that
they can be distinguished even by short substrings (arolnytes).

e

Figure 10: (a) Filter Percentage and (b) Speedup achievedtaf
integrating sigMatch with ClamAV while using different num -
ber of hash functions at various Bloom filter sizes. The resis$
are for a scan on a 100 MB collection of executable files. The
sigTree parameters areb=2 and 3=6 bytes

C.2 Effect of the Hash Functions

In this section we discuss the performance impact of thecehoi
of hash functions used by sigMatch. Hash functions play aeiaru
role in the performance of sigMatch as they influence the rermb
of type B false positives (section 3.2) detected by sigMafthe
criteria for hash functions is that they should be cheap topde,
and they should produce relatively random distributionsriter to
ensure that the collisions in the Bloom filter remain small.

If we decide to use only one hash function, we have two choices
a) we can either choose hash functions that are used forajgner
pose string matching, which tend to have a low collision batieare
computationally expensive, or b) we can choose a computltio
cheaper hash function that is fast but can have a high anilisite.

Using multiple hash functions lets us combine the benefits of
both these options. The idea here is to use multiple conmipatat
ally cheap hash functions such xsr+shift [15] for the first few
hash functions. For the last few hash functions, we choose ex
pensive methods to reduce the number of false positives.a@ihe
vantage with this technique is that the expensive hash rdstae
computed only when the first few hash methods return a false po
itive. The disadvantage with using multiple hash functienthe
additional computation involved when there is a match. Avben
more hash functions are used, more bits are set to 1 in therBloo
filter, which reduces the filtering efficiency.

Figure 10(b) shows the effect of using different number aftha
functions in the sigTree index. We used three hash functicask
xor+shift and RShash(as suggested by Erdogan et al. [15]), and
tested the system by using different combinations of thestéhm
ods. In this experiment, the one hash function case usesShagh
method, while the two hash function case uses the xor+shdt a
RShash methods in that order. The three hash function casesh
in Figure 10(b) uses mask, xor+shift and RShash in that order

As can be seen in Figure 10(b), when no hash functions are used
the Bloom filters are non-existent and the filter rate is very. IUs-
ing multiple hash functions has a clear performance adgamaer
using just a single hash function. Although using three Hashb-
tions provides a marginally better filter rate (Figure 1(&)also
take a longer time to compute the true positive cases. Corsdly,
for large Bloom filter sizes, the performance is best wheiirgg
uses just two hash functions.



